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Abstract 
Several bacterial proteins have been shown to polymerize into coils or rings on cell 

membranes.  These include the cytoskeletal proteins MreB, FtsZ, and MinD, which 
together with other cell components make up what is being called the bacterial 
cytoskeleton.  We believe that these shapes arise, at least in part, from the interaction of 
the inherent mechanical properties of the protein polymers and the constraints imposed 
by the curved cell membrane.  This hypothesis, presented as a simple mechanical model, 
was tested with numerical energy-minimization methods from which we found that there 
are five low-energy polymer morphologies on a rod-shaped membrane: rings, lines, 
helices, loops, and polar-targeted circles.  Analytic theory was used to understand the 
possible structures and to create phase diagrams that show which parameter combinations 
lead to which structures.  Inverting the results, it is possible to infer the effective 
mechanical bending parameters of protein polymers from fluorescence images of their 
shapes.  This theory also provides a plausible explanation for the morphological changes 
exhibited by the Z-ring in a sporulating Bacillus subtilis, is used to calculate the 
mechanical force exerted on a cell membrane by a polymer, and allows predictions of 
polymer shapes in mutant cells. 

 
 
Introduction 

Despite their simplicity when compared to eukaryotes, bacteria display a 
remarkable degree of internal structure.  This is particularly apparent during cell division, 
which involves carefully choreographed chromosome and plasmid segregation, division 
septum assembly, and cell membrane re-arrangements (1-3).  Some species, such as 
Escherichia coli, divide to form essentially identical daughter cells, whereas others, 
including Caulobacter crescentus, form morphologically different daughter cells.  
Largely driven by new experimental techniques, intracellular bacterial structure is the 
focus of much current research.  As well as being intrinsically interesting, results are also 
helping to explain eukaryotic cell structure and are showing the ways in which living 
systems are assembled from otherwise inanimate molecules. 

Several recently discovered bacterial structures are multi-protein polymers that are 
bound to the inside of the cell membrane, which often take the forms of rings or helices 
(Figure 1).  These polymers serve various functions: some help define the cell 
morphology (4-6), others form a septum that contracts upon cell division (7, 8), and yet 
others are involved in locating the cell division site (9, 10).  Presumably, the shapes and 
locations of the polymers are essential to their functions, but what gives them their shape, 
and what positions them in the cell? 

We focus on the membrane-bound protein polymers that are shown in Figure 1: 
MreB, FtsZ, and MinD.  MreB is a cytoskeletal protein that is found in E. coli and other 
bacteria which forms helices that extend the entire length of the cell and back, apparently 
forming closed loops (11).  It helps determine the shape of a cell, probably by directing 
cell-wall synthesis during growth and division (4, 12).  FtsZ, which is widespread among 
prokaryotes, co-polymerizes with several other proteins in a so-called Z-ring (7, 8).  
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Typically, the Z-ring forms at the cell center to form the cell division septum and then 
contracts to divide the mother cell into two daughter cells.  It also exhibits remarkable 
dynamics during B. subtilis sporulation (13): the centrally located Z-ring converts into a 
helix, expands to span the length of the cell, separates and transforms into separate rings 
around each pole, and then one ring contracts to separate the spore from the mother cell.  
The final protein, MinD, forms a polymer in E. coli that primarily spirals about one cell 
pole, but also extends towards the other pole (14-16).  It helps position the E. coli Z-ring 
at mid-cell through an oscillatory mechanism in which MinD alternately polymerizes and 
depolymerizes at opposite ends of the cell (9). 

In this article, we show that mechanical interactions between membrane-bound 
polymers and cell membranes are sufficient to explain the rings, helices, and polar-
targeted structures that are observed for MreB, FtsZ, and MinD.  It also provides a 
plausible explanation for the dynamics of the Z-ring during B. subtilis sporulation.  To 
explore these ideas, we used a combination of numerical and analytical techniques to 
investigate the low-energy structures of stiff unbranched polymers that are bound to rigid 
spherical, cylindrical, or rod-shaped membranes. 

 
 

Description of the model 
In our model (Figure 2), a polymer is a sequence of identical monomers, where 

each of these monomers may represent several individual proteins, proteins in 
neighboring filaments of a polymer bundle, and possibly even several kinds of protein.  
The polymer shape is characterized as a sequence of turning angles as one progresses 
from the “back” of the polymer towards the “front” (much like actin which has pointed 
and barbed ends, the structures considered here are likely to be directionally asymmetric 
as well (5, 17, 18)).  This polymer model was used with straight monomers and finite 
bends for simulations, and in an analogous continuous form for analytical work.  It is a 
variant of the classic “worm-like chain” of Kratky and Porod (19) and of several models 
that were used more recently to investigate the mechanics of DNA (20-22). 

  We follow the Tait-Bryan convention (23) for rotational angles, commonly used 
for ships and airplanes, because it leads to more intuitive results for small bending angles 
than do the conventions that are more common in the polymer physics literature such as 
the Euler (23) or Flory conventions (24).  In our model, the membrane-binding side of 
each monomer is called its bottom, so that rotation tangent to the membrane surface is 
rotation towards the monomer’s left or right.  This is called yaw.  Rotation out of the 
tangent plane is up or down in the monomer’s frame of reference and is called pitch.  
Rotation around the polymer axis is called roll.  Because the word “pitch” can also be 
used to describe the spatial period of a helix, we reduce confusion by only using the word 
“pitch” for the pitch rotation and using the terminology “helix period” for the alternate 
definition.  Following the convention (23), yaw, pitch, and roll rotations are indicated 
with φ, θ, and ψ subscripts, respectively. 

A bending energy is defined to make modeled polymers stiff, with an intrinsic 
shape.  For the discrete case, the energy for the j’th bend is defined as 
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Variables are: aφ,j, aθ,j, and aψ,j are the yaw, pitch, and roll angles for the j’th bend; aφ°, 
aθ°, and aψ° are called the preferred bending angles, which describe the intrinsic polymer 
curvature; and kφ, kθ, and kψ are the bending force constants, which produce polymer 
stiffness.  Only these low order terms of an implicit Taylor expansion of a more 
complicated energy function are included because the angles are typically small and 
because our focus is on low energy conformations.  For the continuous model, the 
bending energy density is defined as 
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Here, s is the pathlength along the polymer from the back to the front, κφ and κθ are 
flexural rigidities (25), κψ is the torsional rigidity, and the α values are the actual or 
preferred curvatures.  Using χ to represent any of φ, θ, or ψ, the correspondence between 
the discrete and continuous parameters, in the limit of short monomer length, l, is: αχ = 
aχ/l, αχ° = aχ°/l, κχ = kχl, and ε = E/l.  For both models, we ignore interactions between 
non-neighbor monomers such as excluded-volume effects. 

For all of the figures and some of the equations presented in this work, the three 
bending rigidities are set equal to each other.  This is equivalent to treating the polymers 
as though they are solid cylindrical rods in which the compositions are isotropic and have 
a Poisson ratio of 0 (significantly more compressible than typical solids).  We do this to 
simplify the analysis and so that fewer parameter effects need to be explored.  More 
importantly, moderate inequalities in the bending rigidities do not affect most results that 
are presented below; they are discussed where they do.  There is very little experimental 
evidence on which to evaluate this assumption of equal rigidities.  The best is that MreB 
is a structural homolog of actin for which the three rigidities have in fact been found to be 
very similar to each other, using experimental mechanical measurements (26-29).  On the 
other hand, microscopy experiments indicate that the torsional rigidity of actin may be 
much smaller than the flexural rigidity (30, 31).  Furthermore, rheological properties of 
MreB gels have been shown to differ some from those of actin gels (32), implying that 
there may be mechanical differences between MreB and actin filaments. 

It is even harder to estimate the preferred curvatures in the model.  In principle, they 
could be derived from protein crystal structures and models of molecular interaction 
potentials.  In practice, this is impossible because the arrangement of individual proteins 
in these filaments is largely unknown, there are many contact points between neighboring 
proteins in filaments, and the bending angles that are involved are very small.  Because of 
this lack of information, we explore our model over wide ranges of preferred curvature 
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values.  In the discussion section, our results are used to estimate the preferred curvatures 
for MreB, MinD, and FtsZ. 

 
 

Simulation methods 
Statistical mechanics simulations were performed using a program based on the 

Metropolis algorithm (33) (the source code can be downloaded from: 
genomics.lbl.gov/~sandrews/software.html).  Briefly, a simulation starts with an initial 
polymer structure, computes its bending energy using Eq. 1, makes a random change to 
create a trial structure, computes the new bending energy, and replaces the initial 
structure with the trial structure if (a) the trial energy is less than the initial energy, or (b) 
a uniformly chosen random number between 0 and 1 is less than exp(–∆E/kBT), where ∆E 
is the difference between the bending energies and kBT is the thermal energy.  This cycle 
repeats until a total of 20,000 trial moves are accepted, after which point essentially no 
substantial changes are made.  Each trial structure is created with either of two equally 
likely changes: a random internal angle is changed a small amount, which pivots the 
entire polymer from that point to a randomly chosen end; or the polymer is treadmilled 
one step by adding a monomer to a random end of the polymer, with a small random 
angle, and a monomer is removed from the other end.  Both possibilities are used because 
preliminary work showed that either one alone led to the simulation getting stuck in local 
energy minima early in the optimization process.  Trial moves are reversible, ergodic, and 
unordered, which are essential for achieving accurate statistics with the Metropolis 
algorithm (33).  In a method called simulated annealing, the thermal energy is started 
with a high value to rapidly explore the space of possible polymer structures and is 
gradually decreased to isolate a low-energy structure.  Final structure morphologies and 
bending energies were quite consistent over different runs, were independent of the 
starting polymer structure, and did not change with more conservative parameter choices 
(more iterations, slower annealing rate, fewer monomers, etc.).  These indicate that the 
simulation results accurately represent the desired minimum energy structures. 

In the simulation program, polymers are mapped from a flat plane to the surface of 
a sphere, cylinder, or rod.  It is impossible to map points from a plane to these curved 
surfaces while preserving local distances, so the program instead maps angles: a turn to 
the left or right on a plane is mapped to the corresponding 3-dimensional bend (yaw, 
pitch, and roll) for the appropriate surface.  Constraints are that monomer ends are in 
contact with the curved surface and the bottom faces of monomers are plane-parallel to 
the surface beneath the center of the monomer.  These mathematics are described in the 
appendix. 

 
 

Results 
Entropy contributions 
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In preliminary studies, we investigated the shapes of polymer structures over a 
range of simulated thermal energies to investigate the role of entropy.  Results are what 
one would intuitively expect: as the effective temperature increases, the polymer shapes 
become less ordered.  At high effective temperatures, the polymers are completely 
unordered random walks on the membrane surface.  No phase transitions or other 
interesting behaviors were observed. 

Because MinD, MreB, and FtsZ all appear to polymerize with multi-filament 
bundles (17, 34-37), their rigidities are probably comparable to or larger than those of 
actin, which is a two-filament bundle (38).  Actin has a bending persistence length of 
around 16 µm (26, 28), which is several times the width of rod-shaped bacterial cells.  
Thus, for all of the polymers that we focus on, mechanical factors are expected to be 
more important in determining polymer shapes than entropic ones. 

Because entropy contributions are likely to be minor for these systems, we focus the 
rest of our discussion on the low-energy results. 

 
Spherical membrane 

On a spherical surface, low-energy polymer structures are invariably circular 
(Figure 3A).  A preferred yaw curvature of zero leads to a great circle around the sphere 
and larger absolute values of αφ° yield progressively smaller circles.  Seen from the 
outside, with the circle on the close side of the sphere, the polymer turns clockwise or 
counter-clockwise for positive and negative αφ° values, respectively.  The preferred roll 
and pitch curvatures were found to have no effect. 

These simulation results can be understood analytically.  For a continuous polymer 
that is constrained to the inside of a sphere of radius R, it is shown in the appendix that 
the pitch and roll curvatures are constrained to –R–1 and 0, respectively.  Because these 
are fixed, variation of the corresponding preferred values cannot change the actual pitch 
or roll curvatures, and thus cannot select specific low-energy structures; this variation 
does affect the polymer bending energy density though, shown in Figure 3B.  In contrast, 
the yaw curvature is unconstrained so the lowest energy structure is attained when the 
actual yaw curvature equals the preferred value.  Quite generally, a constant transverse 
curvature, with no rolling curvature, yields a circular shape.  This is the situation here, 
which is in agreement with the simulations. 

Several properties of the polymer circle can be calculated.  Firstly, the circle radius 
is the inverse of the total curvature, [αφ

2(s) + αθ
2(s)]1/2, so the circle radius is 
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The polymer bending energy density is found from Eq. 2 and the constraints to be 
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shown in Figure 3C.  Finally, the polymer exerts a force on the spherical membrane.  The 
overall outward force that is exerted by the polymer is the derivative of the energy 
density with respect to the sphere radius, which is 
 

 

� 

F =
!"

R
2

1

R
+ #"

o
$ 

% 
& 

' 

( 
) , (5) 

 
shown in Figure 3D.  It is noteworthy that the total inward or outward force that the 
polymer applies to the membrane is independent of αφ°, and thus of the polymer shape.  
There are no forces parallel to the membrane because our modeled membrane does not 
restrict motion in the membrane plane; in this way, it conforms to the commonly 
accepted fluid-mosaic model of biological membranes.  Naturally, if the membrane were 
sufficiently flexible to respond to the force given above, the polymer would not simply 
change the sphere radius but would distort it.  Membrane and cell wall deformation is 
sufficiently complex (25, 39), and distinct from the focus of this work, that we do not 
consider it further. 

As an interesting aside, Spakowitz and Wang showed that if one removes our 
constraint that the bottom face of the polymer must be plane-parallel to the surface, then 
quite different structures result (40).  In this case, the polymer forms a complex pattern of 
overlapping cycles. 

 
Cylindrical membrane 

A greater diversity of structures is found on cylindrical surfaces, shown in Figure 
4A.  These are right- and left-handed helices of various pitches, rings around the cylinder, 
straight polymers that parallel the cylinder axis that we call a “line” morphology, and 
loops that form circles on a side of the cylinder. 

As on a sphere, the pitch and roll curvatures are also constrained on a cylinder.  It is 
shown in the appendix that, at any point along the polymer, these curvatures are 
constrained according to the equations 
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The variable b is the absolute direction of the polymer on the cylinder surface, relative to 
the cylinder axis.  In other words, if the cylinder were unrolled into a plane with the x-
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axis of the plane defined to be parallel to the cylinder axis, then b is the angle of the 
polymer, relative to the x-axis.  If b is constant over the length of the polymer and equals 
0, or another integer multiple of π, then the polymer is parallel to the cylinder, resulting 
in a line morphology.  Values of ± π/2 imply that the polymer direction is perpendicular 
to the cylinder axis, yielding rings around the cylinder.  Other constant values of b 
produce helices with different spatial periods. 

In Figure 4B, the pitch and roll components of the curvature energy are shown as 
functions of the actual pitch and roll values.  The curvature constraints appear in this 
figure as the circle that is described by the equation (derived from Eq. 6) 
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The value of b increases linearly as one moves counter-clockwise around the constraint 
circle, going from 0 to π in one full rotation.  We define U(b) to be the pitch and roll 
curvature energy as a function of the position on the constraint circle.  It is the “height” of 
the energy graphed in Figure 4B over the constraint circle and it is also the last two terms 
of Eq. 2; U(b) is graphed in the inset of Figure 4B. 

Assume for now that αφ°, the preferred yaw curvature, equals zero.  We show below 
that this implies that the actual yaw curvature, αφ, also equals zero over the length of the 
minimum-energy structure.  Because there is no left-right curvature, b is constant over 
the length of the polymer and the morphology is a ring, line, or helix.  What is the value 
of b?  In both portions of Figure 4B, the coordinate with the lowest attainable energy is 
shown with an asterisk.  It corresponds to a certain b value, and thus a certain helix 
period.  More generally, whenever κθ = κψ, the lowest attainable energy point will be at 
the intersection of the constraint circle and the line from the circle center to (αθ°, αψ°), 
which can be inferred from Figure 4B.  This yields the absolute polymer angle: 
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This result, interpreted as a polymer morphology, is shown in Figure 4C as a phase 
diagram. 

If κθ ≠ κψ , the parabolic energy basin shown with colors in Figure 4B becomes 
distorted so that the sides are steeper on one axis than the other, thus changing its shape 
from that of a bowl to that of a trough.  This also changes the shape of U(b), possibly 
causing it to have not one but two minima.  Two minima would create bistability, 
meaning that either of two polymer conformations would be stable to perturbations.  For 
example, it was mentioned above that actin may have a much lower torsional rigidity 
than flexural rigidity (30, 31).  Supposing that this inequality is the case for, say MreB, 
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then the U(b) function for MreB would have two minima at equal αθ values, with nearly 
the same energies.  These would lead to an equal prevalence of right- and left-handed 
helical MreB polymers, both with the same helical period.  Quite generally, bistability 
can also lead to switching behaviors.  Here, small changes in the preferred curvatures, or 
in the rigidities, would change the relative energies of the two minima and could thus 
abruptly switch the morphology from one shape to another. 

Equation 2 only includes three terms of the nine that might reasonably be included.  
Omitted are cross-terms, such as κφθ[αφ(s)–αφ°][αθ(s)–αθ°]/2.  Inclusion of these terms 
again distorts the parabolic energy basin that is shown in Figure 4B, but now so that the 
trough orientation is not necessarily parallel to the αθ or αψ axes (these are just the off-
diagonal terms of a three-variable Taylor expansion (41)).  Again, this changes the 
precise shape of U(b) and changes the position of the energy minimum (or minima).  It is 
impossible to analytically solve for energy minima when κθ ≠ κψ or when these cross-
terms are included, but they are easily found with numerical minimization algorithms 
(42) (C language code for this is available in the supporting information). 

Now consider a non-zero αφ°; this makes the polymer “want” to curve either left or 
right in the plane of the surface.  Considering a very long polymer so that end effects are 
unimportant, this was shown by simulation to have either of two effects: either the 
polymer curves continually, or it does not curve at all.  In the former case, the polymer 
adopts a looping morphology on the side of the cylinder, while the latter case leads to 
rings, lines, or helices, exactly as before.  Considering the loops, a non-zero αφ(s) causes 
the absolute angle of the polymer on the cylinder, b(s), to increase or decrease as one 
progresses from the back to the front of the polymer.  This curvature is represented in 
Figure 4B by motion around the constraint circle, and around the periodic function U(b).  
Continuous curving can reduce the energy in the yaw term of equation 2, but, because it 
makes b(s) usually unequal to b*, the pitch and roll terms of the equation are nearly 
always greater than their minimum values.  In contrast, a non-curving polymer can 
minimize the energies for pitch and roll, but not for yaw; in this case b(s) is constant and 
equals b*.  Thus, there is an energy trade-off.  Large absolute values of αφ° lead to loop 
shapes, while small absolute values lead to the non-curving rings, lines, and helices.  
Also, looping is favored when U(b) is relatively flat, which occurs when αθ° and αψ° are 
near the center of the constraint circle. 

Figure 4D shows a phase diagram for polymer shapes on a cylindrical surface in 
which αφ° is non-zero.  The looping region that is shown in blue was identified from 
simulations and the logic presented above, but its exact radius can only be found by 
calculating the minimum energy densities for the non-looping and looping structures, 
described next. 

The curvature energy density for a ring, line, or helix is simply Eq. 2, but with 
substitutions for the minimum energy curvature angles: 
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This energy density is graphed in Figure 4E and in the outer (non-looping) portion of 
Figure 4F.  It is seen that the energy density is lowest when the preferred curvatures are 
on the constraint circle because this allows the actual curvatures to equal the preferred 
ones. 

For the looping situation, the energy density varies over the polymer pathlength 
because the curvatures vary.  Thus the energy density average needs to be calculated.  
Rather than finding it by integrating over the pathlength s, it turns out to be easier to 
integrate over the absolute angle b.  Following is the average energy density for half of a 
polymer loop, for which b is taken from 0 to π: 
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The term in brackets inside the second integral is the energy density as a function of 
angle b, mostly from Eq. 2 and the definition of U(b).  The function α'φ(b) gives the yaw 
curvature for absolute angle b, exactly as αφ(s) represents the yaw curvature at pathlength 
s.  The other term in the second integral weights the energy density by the pathlength that 
the polymer spends at each absolute angle to address the fact that the integral is over b 
rather than s.  Because α'φ(b) is the bending angle per unit of pathlength, 1/α'φ(b) is the 
amount of pathlength per unit amount of bending angle, which is the desired weighting 
factor.  Finally, the first term in the equation corrects for the effect of the weighting factor 
within the second integral.  By symmetry, the energy density of one half of a polymer 
loop is identical to that for the other half, so Eq. 10 also represents the average energy 
density for a whole loop.  Also, the average energy density of a sufficiently long polymer 
approaches that for each loop. 

To solve Eq. 10 for the average energy density of a minimum-energy loop, one 
needs to optimize it not for single value (comparable to b* in Eq. 9), but for the optimal 
function α'φ(b).  This type of problem is called the calculus of variations (41).  This 
particular optimization cannot be solved analytically so we use a numerical variational 
treatment: α'φ(b) is expanded with a 24-term Fourier series because it is a periodic 
function; then, a greedy algorithm that employs a random walk in Fourier parameter 
space optimizes the coefficients to achieve the minimum average energy density (the C 
language code is available in the supporting information).  The resulting average energy 
density is compared to that from Eq. 9 to determine if the lowest energy structure is a 
looping or non-looping structure.  In the former case, the appropriate portion of the phase 
diagram is colored blue in Figure 4D and the average energy density is graphed in the 
inner portion of Figure 4F.  Results from this calculation agree well with both the 
qualitative discussion presented above and those from simulations. 

As was done for the spherical surface, the radial force exerted by a polymer on a 
cylindrical surface is found by differentiating the curvature energy density by the radius, 
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which is now the cylinder radius.  This force is shown in Figures 4G and 4H for zero and 
non-zero αφ° values, respectively.  There is no force when the preferred curvatures lie 
along the constraint circle.  There is a net inward force on the membrane when these 
parameters lie outside the circle, and vice versa.  This radial force, whether inward or 
outward, is strongest for ring shapes, decreases with longer-period helices, and becomes 
zero for lines. 

Thus far, the energy densities that have been minimized are averages over the entire 
polymer.  However, if a polymer grows rapidly and cannot rearrange once it is formed, 
then the relevant energy density is only that at the growing end.  This does not affect the 
discussions presented above for a polymer on a sphere, or on a cylinder where αφ° was 
considered to equal zero.  However, a different conceptual picture is required for a 
polymer on a cylinder with non-zero αφ°.  Now, it is best to think of the preferred yaw 
value as applying a “curvature force” at the polymer terminus (this can be seen by 
analogy between Eq. 2 and Hooke’s law).  The polymer responds by curving, as it grows, 
until an equal opposing curvature force is applied by the pitch and roll constraints.  This 
latter force is proportional to the slope of U(b) (Figure 4B).  Once equality is reached, if 
it can be achieved, the polymer grows thereafter as a ring, line, or helix.  On the other 
hand, the yaw force may exceed the maximum opposing pitch/roll force, in which case 
the polymer continues to turn indefinitely to form a loop morphology.  Returning to the 
former case, the absolute angle of the ring, line, or helix is found by setting the net 
curvature force to zero, 
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and solving for b.  A complication seen here is that the relative importance of the yaw 
and pitch/roll forces depend on the monomer length, l.  The reason is that for extremely 
short monomers, the local cylinder surface is effectively flat so the yaw force dominates; 
the opposite is true for long monomers.  Biologically, the effective monomer length is the 
amount of the polymer terminus that is relatively free to move on the membrane surface. 

 
Rod-shaped membrane 

For the most part, structures on a rod-shaped membrane combine the results for the 
spherical and cylindrical membranes.  If the polymer energy density can be lower on the 
cylinder portion of the rod than on one of the hemispherical endcaps, it targets the 
cylinder portion and adopts a ring, line, helix, or loop morphology, depending on the 
preferred curvatures.  On the other hand, if the energy density is lower on a sphere, the 
polymer becomes “polar-targeted,” meaning that it forms a circle about one of the 
hemispherical endcaps.  As shown in Figures 5A and 5B, polar-targeting is possible when 
there is a non-zero preferred yaw angle. 

The phase diagram for the morphology as a function of the preferred yaw, pitch, 
and roll angles is fundamentally a 3-dimensional concept.  Four slices of this volume are 
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shown in Figure 5: the pitch-roll plane at αφ° = 0 (Panel A), the pitch-roll plane at αφ° = 
0.5/R (Panel B), the pitch-yaw plane at αψ° = 0 (Panel C), and a slice that is taken about 
the cylinder constraint circle (Panel D).  The first two are analogous to ones shown earlier 
for cylindrical membranes.  The others show that polar-targeting and loops become 
increasingly dominant structures as preferred yaw angles get farther from zero.  In 
contrast, rings are low-energy structures in only the special case that both αφ° and αψ° 
equal zero and αθ° < –0.5/R.  As discussed below, many protein polymers probably do 
not exert strong forces on the membranes, which allows the relevant portion of the 3-
dimensional phase diagram to be reduced to only that shown in Figure 5D.  Here, the 
parameter possibilities that give rise to rings reduce to a single point, while those for left- 
or right-handed helices become finite areas. 

Long polymers that are targeted to the cylindrical portion of the cell do not 
necessarily fit there.  In these cases, the polymer simply wraps around the endcaps as few 
times as possible, with radii of curvature that are dictated by the preferred yaw angle (Eq. 
3).  Near the boundary of the polar-targeted and either the helix or loop regions of the 
phase diagram, there is minimal energy difference between the two possibilities.  
Simulated polymers with parameters near these boundaries frequently adopted hybrid 
shapes in which different parts of the polymer took on different morphologies. 

Most of the polymer structures that are possible on rod-shaped membranes have 
been observed in live cells.  FtsZ forms a ring (8), MreB forms helices (11), and MinD is 
a hybrid of polar-targeted and helical (15).  TubZ is a recently discovered member of the 
FtsZ/tubulin superfamily that exhibits line-shaped structures (J. Pogliano, personal 
communication).  The sole morphology that has not been observed yet in bacteria is the 
loops structure. 

 
 

Discussion 
Dynamics and mobility 

Our model is defined for a polymer that is static in composition and that can move 
freely within the plane of a membrane.  This is in marked contrast to the biological 
situation.  All three protein polymers that we focus on are highly dynamic: MinD 
polymers form and disassemble about every 20 seconds in an oscillation from one cell 
pole to the other (43), Mbl (a protein that is similar to MreB) proteins turn over with a 
half-time of about 8 minutes (44), and FtsZ proteins turn over with a time-constant of 
about 30 seconds (45).  Mobility of these polymers on the cytoplasmic membrane varies.  
MinD binds the membrane directly with an amphipathic helix (46) and does not appear to 
associate with other membrane proteins (16), so is probably relatively free to rearrange.  
FtsZ appears to initially bind the cytoplasmic membrane through its own interactions and 
through associations with the membrane-binding proteins ZipA and ZapA, which FtsZ 
recruits to the Z-ring (47-50).  In this case, there does not appear to any prior structure 
that directs FtsZ to a ring (although see (51), where it is shown that successive division 
planes alternate orientations in spherical cells), but the structure may be anchored to the 
membrane once it is formed.  Finally, MreB may bind to the transmembrane proteins 
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MreC and MreD, of which MreC binds to the cell wall (52, 53).  In apparent contrast, it 
was also shown that MreC helices in Caulobacter crescentus occur even in the absence of 
MreB, and, when MreB is present, the two helices do not overlap but are instead out of 
phase (54).  In any case, it is likely that MreB binds to proteins that are largely 
immobilized. 

Our model can be applied to these situations by considering the likely effects of 
dynamics.  When a polymer grows at a terminus, each monomer will, most likely, 
preferentially adopt a configuration that is close to the lowest energy one that is available.  
This could happen because reaction rates into low-energy states are faster than those into 
high-energy states, because monomers with high-energy configurations would tend to 
dissociate rapidly, or through small rearrangements on the membrane occurring after a 
monomer binds.  Whatever the mechanism, if the net growth of the polymer is slow 
compared to the rates of reactions and rearrangements at its terminus, equilibrium 
statistical mechanics assures us that low-energy conformations will dominate the result 
(entropic contributions are minor here because the only degree of freedom is the bending 
angle of the terminal monomer).  Depending on the mechanical parameters, it was shown 
above that minimum-energy growth structures are, or are close to, the morphologies that 
minimize the curvature energy of the entire polymer.  Thus, polymers are expected to 
naturally grow into reasonably low-energy shapes.  These initial structures should relax 
into even more mechanically favorable conformations if the polymer is at least somewhat 
mobile within the membrane, or through a turnover of internal monomers.  The latter case 
is an example of a dynamic equilibrium so any small rearrangements that are made in 
monomer positions will necessarily, on average, reduce the local free energy of the 
polymer.  Thus, our model was not defined with compositionally dynamic polymers, but 
such dynamics are a mechanism by which polymers would be expected to adopt 
mechanically favorable shapes.  The rapid dynamics of the MreB, MinD, and FtsZ 
polymers do not invalidate our model, but actually allow it to be applicable despite their 
lack of free movement within the plane of the cytoplasmic membrane. 

 
MreB 

It is relatively easy to find curvature values from fluorescence images.  From the 
MreB image in Figure 1A, the ratio of the spatial helix period to the helix diameter is 
about 3.0.  Assuming a typical E. coli cell diameter of 0.8 µm, this corresponds to a 
“helical density,” ρ, of about 0.4 turns per micron.  Simple geometry converts this to the 
absolute angle of the polymer on the cylinder surface: 
 
 

� 

2!R" = tanb, (12) 

 
yielding b ≈ ±46°.  Figure 1A is of a MreB-YFP construct (15), which was shown to 
produce more extended MreB helices than those from the wild-type protein.  A statistical 
survey of random images of wild-type MreB found an average helical density of 1.6 ± 0.3 
turns per µm (16), corresponding to an absolute angle of ±(76 ± 3°).  The absolute angle 
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is converted to the actual curvatures, which are then used to infer the preferred 
curvatures.  Because a helix is observed on the cylindrical portion of the cell, Eq. 6 is 
used to find αθ ≈ –0.94/R and |αψ| ≈ 0.23/R.  Current models of MreB suggest that the 
polymer does not apply strong inward or outward forces to the membrane, but instead 
acts more like a scaffold for membrane and cytoskeletal construction (4, 55).  If this is the 
case, then our results on polymer forces imply that the preferred curvatures are likely to 
lie near the cylinder constraint circle, meaning that they are close to the actual curvatures.  
Two pieces of evidence suggest that the preferred yaw angle is small.  Firstly, Figure 5D 
shows that a polymer with a b angle of 76° (~0.42π radians) would not form a helix, but 
would target the poles, if |αφ°| were greater than about 0.24/R.  Also, the few published 
MreB images that reveal the polymer shape on the cell poles (15, 56) seem to show that 
the polymer adopts great-circle shapes.  Thus, we find that the intrinsic curvature values 
for an MreB protein are |αφ°| < 0.24/R, αθ° ≈ –0.94/R, and |αψ°| ≈ 0.23/R.  Substituting in 
our assumed radius of 0.4 µm and converting from radians to degrees yields intrinsic 
curvatures of |αφ°| < 34°/µm, αθ° ≈ –135°/µm, and |αψ°| ≈ 34°/µm.  These results are 
listed in Table 1 along with analogous results for other protein polymers.  Also shown are 
simulation results, using the inferred parameters, which can be seen to compare favorably 
with experimental images. 

The preferred curvature values allow predictions to be made about MreB structures 
on different shape membranes.  On spherical cells, including minicells, the small αφ° 
value implies that great-circle structures are expected.  For the same reason, MreB would 
be expected to form straight filaments on a planar membrane, as one might create in 
vitro.  In this case, the polymer would apply a force to the membrane in the direction that 
would cause it to curl towards the protein.  On mutant cells with diameters that are larger 
than normal, MreB would be expected to exhibit a helix with a larger absolute angle than 
usual and produce an inward force on the membrane.  Unusually small diameter cells 
would produce the opposite effects. 

 
MinD 

Analysis of the MinD helices, using an average helix density of 2.2 turns per µm 
(16), implies that the pitch and roll curvatures for MinD are –0.96/R and 0.18/R, 
respectively.  As with MreB, it is expected that MinD does not exert a significant force 
on the cell membrane, so these are also the preferred curvatures.  MinD is observed to 
both target cell poles and form coils the length of the cell, suggesting that αφ° is such that 
the MinD polymer parameters are close to both the polar-targeting and helix phases of 
parameter space, which is achieved when αφ° is 0.19/R.  Our simulations showed that this 
boundary of phase space is quite sharp since slight differences in αφ° drove simulated 
polymers completely to either the polar or cylindrical portions of the cell.  Thus, either 
evolution has lead MinD proteins to have precisely the correct shape so that they will 
polymerize onto both the cell poles and the cell center or, more likely, additional 
mechanisms are involved in targeting one end of the MinD polymers to the cell poles (a 
factor that is also required for dynamic models that have been described by Drew and 
Cytrynbaum (57, 58)). 
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Many studies have investigated MinD polymerization in wild-type cells and in 
alternate systems, although it is hard to reconcile the results with each other or with the 
theory presented here.  On round E. coli cells, MinD is seen covering entire membrane 
regions, in filamentous structures, and in very small circles (16).  The circle diameters 
suggest that αφ° is about 700°/µm, which is 26 times the value estimated above.  In vitro, 
MinD polymerizes to form short straight filaments in the absence of lipids (17); in the 
presence of lipid vesicles, MinD tubularizes them, with MinD tightly wrapped around 
their outsides (59).  Neither in vitro result is consistent with any of the others.  Thus, 
there is clearly much more to learn about MinD polymers. 

 
FtsZ 

As described in the introduction, the FtsZ-dominated Z-ring exhibits remarkable 
dynamics during B. subtilis sporulation in which it transitions from a ring to a helix, to a 
ring near a pole, and then finally constricts.  Our mechanical model provides a plausible 
explanation for these changes. 

Bacterial Z-rings are not merely comprised of FtsZ, but also FtsA, ZipA, ZapA, and 
many other proteins (8).  Because these proteins bind to FtsZ, they may affect its 
mechanical properties.  They might change the mechanics directly through their 
incorporation into the Z-ring or by causing the dominant FtsZ proteins to switch between 
native structures (60).  Similarly, it has been proposed that phosphate release from GTP 
hydrolysis by FtsZ could trigger deformation of FtsZ filaments, which would cause Z-
ring contraction (3, 37).  These provide mechanisms for the cell-cycle regulatory network 
to control the intrinsic curvature parameters of the Z-ring: it could vary expression levels 
of specific Z-ring proteins, or control the FtsZ-GTP abundance through various reactions.  
Perhaps SpoIIE or FtsA convert the Z-ring from a ring to a helix (13), other proteins from 
a helix to polar-targeted rings, and phosphate release from GTP hydrolysis would create a 
constrictive force that would invaginate the septum (61).  This hypothetical trajectory is 
illustrated in Figure 6. 

This mechanism relies on the observed rapid reassembly of the Z-ring (45) both for 
the shape transitions to occur, and so that the cell cycle regulatory network could exert a 
tight control over the Z-ring shape.  It is also consistent with experiments that showed 
that Z-ring depolymerization is not required for ring constriction (62), in contrast to some 
other models (63).  Finally, it agrees as well with observations that the Z-ring can 
constrict and deform the cell wall even if the ring is incomplete or is a spiral (61). 

 
 

Conclusions 
We propose a simple mechanical model for membrane-bound protein polymers.  In 

it, polymers are characterized by their flexural and torsional rigidities and by their 
intrinsic 3-dimensional curvature on the yaw, pitch, and roll axes.  Minimization of the 
bending energy of the polymers, while constraining them to surfaces that have same the 
shape as rod-shaped bacteria, produce five distinct classes of morphologies: rings, lines, 
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helices, loops, and polar-targeted circles.  The specific low-energy shape that is achieved 
depends on the values of the parameters, of which the preferred curvatures are the most 
important.  Many of these morphologies agree well with structures that have been 
observed for membrane-bound protein polymers including FtsZ, MreB, and MinD.  
While not investigated here, the shapes of Mbl, MreC, ParA, LamB, TubZ, and many 
other membrane-bound protein polymers are sufficiently similar that the same model may 
apply to them as well. 

Although the model definition does not specifically address hindered movement of 
polymers on the cytoplasmic membrane, or dynamic compositions of polymers, it is 
nevertheless consistent with these aspects of bacterial polymers.  In fact, it was shown 
that monomer (or protofilament) turnover can promote the relaxation of polymers to low-
energy structures despite hindered movement within the membrane.  Moreover, a 
changing polymer composition could provide a mechanism for the bacterial cell cycle 
regulatory network to direct the structures of specific polymers.  This was proposed as a 
mechanism for several Z-ring transformations that occur during B. subtilis sporulation, as 
well as for normal Z-ring constriction. 

It is unlikely that this simple mechanical model is the only determinant of 
membrane-bound polymer shape.  However, the likely stiffness of cytoskeletal polymers 
make these mechanics almost certain to contribute significantly.  From images of 
fluorophore-tagged protein polymers, it is straightforward to estimate the primary model 
parameters, which are the intrinsic curvatures on each bending axis.  These parameters 
can be used to predict polymer structures in new shapes, including in elongated or round 
mutant cells, in vesicles, or on a planar supported bilayer. 

 
 

Appendix 
In this section, we present the mathematics for constraining polymers to cylindrical 

or spherical curved surfaces, for both finite and infinitesimal length monomers.  It also 
applies to rod-shaped bacteria because they have nearly cylindrical center sections and 
hemispherical ends. 

We start by mapping a sequential pair of monomers from a plane to a cylinder, 
shown in the left column of Figure A1.  These monomers each have length l.  Their 
directions, meaning the directions of the vectors that go from the backs of the monomers 
to the fronts, relative to the x-axis of the plane, are b1 and b2.  The angle between these 
directions is a.  To map this bend from a plane to a cylindrical surface, the “paper” on 
which the monomers are drawn is creased so that the crease intersects the bend and is 
parallel to the cylinder axis, which is taken to be the x-axis.  The paper is folded until the 
monomer ends are at the cylinder surface, as shown at the bottom of Figure A1; the 
folding angle is denoted χ.  Note that the monomers are plane-parallel to the portion of 
the cylinder surface that is directly below their centers. 

Before the paper was folded, the relative direction of the second monomer was a = 
b2–b1, which can be thought of as the following process: start with the monomers parallel, 
rotate the second monomer backwards by b1 to the x-axis, and then rotate forwards by b2.  



 17 

This process can also be expressed with direction cosine matrices, Aplane = Rz(b2)Rz(–b1), 
where Rz(φ) is the rotation matrix for rotation about the z-axis by angle φ, 
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For brevity, “c” is used for cosine and “s” for sine.  An analogous process finds the 
relative direction between the monomers after folding: start with the monomers parallel, 
rotate the second monomer backwards by b1 to the x-axis, fold along the x-axis by χ, and 
then rotate the monomer around the new z-axis by b2.  This is Acyl = Rz(b2)Rx(χ)Rz(–b1), 
which expands to 
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The yaw, pitch, and roll angles are found from this direction cosine matrix to be 
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For the continuous model, these are taken in the limit of short monomers that have 

small bends between them.  Using α as the polymer curvature on the flat plane and b as 
the absolute direction on the plane (b1 and b2 become identical in this limit), the yaw, 
pitch, and roll curvatures are found to be 
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The latter two equations represent the constraints that are imposed by the cylindrical 
surface. 

A similar procedure constrains a polymer to a spherical surface, shown in the right 
column of Figure A1.  Monomers are drawn on a flat circle of paper and the paper is 
made into a cone by removing a wedge that surrounds the first monomer, and bringing 
the new edges together.  The resultant cone bends the monomers up from the x,y-plane by 
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angle χ, which puts the monomer ends at the surface of a sphere and leaves the 
monomers plane-parallel to the portion of the sphere that is directly beneath their centers.  
Mathematically: start with the first monomer correctly positioned in the sphere and the 
second monomer parallel to it, rotate the second monomer about the y-axis by –χ to bring 
it up into the x,y-plane, rotate about the z-axis (the axis of the cone) by a’ = a/cosχ to 
achieve the proper left-right bend, and finally rotate it again on the y-axis by –χ to bring 
it up to the cone.  This is Asph = Ry(–χ)Rz(a’)Ry(–χ), which is 
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The yaw, pitch, and roll angles are 
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The short-monomer limit yields the polymer curvatures, 
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Again, the latter two equations represent the constraints that are imposed on a polymer, 
this time by a spherical surface. 
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Table 1.  Curvature parameters of polymers 
 
 ρ |b| |αφ°| αθ° |αψ°| diagram 

Yfp-MreBa 0.4 46° < 0.64/R ~ 92°/µm –0.52/R ~ –74°/µm 0.50/R ~ 72°/µm  

MreBb 1.6 76° < 0.24/R ~ 34°/µm –0.94/R ~ –135°/µm 0.23/R ~ 34°/µm  

MinDb 2.2 80° 0.19/R ~ 27°/µm –0.96/R ~ –139°/µm 0.18/R ~ 25°/µm  

FtsZ rings ∞ 90° 0 –1/R ~ –143°/µm 0  

FtsZ helicesc 2.5 81° < 0.15/R ~ 21°/µm –0.98/R ~ –140°/µm 0.15/R ~ 22°/µm  

FtsZ contracting ∞ 90° 0 < –1/R ~ –143°/µm 0  

 
Table 1.  Curvature parameters of protein polymers, inferred from fluorescence images.  
ρ is the helical density, b is the absolute angle of the polymer on the cylinder surface, and 
αφ°, αθ°, and αψ° are the preferred yaw, pitch and roll curvatures, respectively.  In all 
cases, the cell radius is assumed to be 0.4 µm.  With the exception of the “FtsZ 
contracting” line, it is assumed that the polymer exerts minimal inward or outward force 
on the cell membrane.  Footnotes: a. extended form, measured from Figure 4 of ref. (15); 
b. value is from ref. (16), c. measured from Figure 1 of ref. (13). 
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Figure captions 
 

Figure 1. 
 Examples of coiled protein polymers in bacteria, which are bound to the inside of 

the cell membrane.  (A) MreB in E. coli (15), (B) FtsZ in B. subtilis (both the 
central ring and the helix) (13), (C) MinD in E. coli (15).  In all images, the 
polymerizing proteins were fused to, and imaged with, fluorescent protein markers.  
The membrane is made visible in panel B with an orange membrane stain, and the 
cell cytoplasm is shown in panel C with red fluorescent protein.  In this article, a 
mechanical explanation for these polymer structures is shown to be consistent with 
the experimental images.  Figures are reprinted with permission from the referenced 
articles: panels A and C are copyright 2003 National Academy of Sciences U.S.A. 
and panel B is copyright 2002 Elsevier. 

 
Figure 2. 
 Polymer models used for simulations and analytical theory.  (A) Discrete model 

with finite length monomers in which the j’th bend has yaw, pitch, and roll angles 
aφ,j, aθ,j, and aψ,j, respectively.  (B) Continuous model in which the yaw, pitch, and 
roll curvatures at pathlength position s are αφ(s), αθ(s), and αψ(s), respectively. 

 
Figure 3. 

 A polymer on a sphere.  (A) Examples of low-energy structures with αφ° = 0 and 
αφ° = 1.5/R.  (B) Example of a potential energy surface for polymer curvature, 
illustrated for parameter values αθ° = –0.7/R and αψ° = 0.3/R.  Here, and in other 
figures, blue is low energy and red is high energy.  Quantitative color scales are not 
shown because flexural rigidities are unknown for the polymers that we focus on.  
However, color scales are consistent between comparable figure panels, which in 
this case are panels B and C.  On a sphere, the actual αθ and αψ values are 
constrained to the pink dot marked “sphere constraint.”  (C) Minimum attainable 
energy density as a function of the parameter values.  (D) Radial force on the 
spherical membrane by the polymer, as a function of the parameters; αφ° has no 
effect on the force. 

 
Figure 4. 
 A polymer on a cylinder.  (A) Examples of low-energy structures, which we call a 

right-handed helix, a ring, a line, and a loop, respectively.  (B) Example of a 
potential energy surface for polymer curvature, illustrated for parameter values αθ° 
= –0.7/R and αψ° = 0.3/R.  On a cylinder, the actual αθ and αψ values are 
constrained to the circle shown with a pink dashed line.  The inset shows the height 
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of the energy surface as a function of the position around the constraint circle, for 
which one full turn is an increase of b from 0 to π.  Asterisks show the lowest 
energy value that obeys the constraints.  (C) and (D) Phase diagrams for αφ° = 0 and 
αφ° = 0.5/R, respectively.  Green = right-hand helix, pink = left-hand helix, blue = 
loops, black line = ring, dashed line = line.  Grey lines connect parameter values 
that yield helices with the same helix-pitch.  (E) and (F) Minimum attainable energy 
densities for αφ° = 0 and αφ° = 0.5/R, respectively, using the same color scale.  In 
both cases, the energy is minimum at the constraint circle.  In (F), the dashed line 
indicates the boundary of the loops region, which is also a local energy maximum.  
(G) and (H) Radial force on the cylindrical membrane for αφ° = 0 and αφ° = 0.5/R, 
respectively.  In both cases, the radial force is zero at the constraint circle. 

 
Figure 5. 
 Phase diagrams for polymer morphologies on a rod-shaped membrane.  Colors and 

symbols are the same as for Figure 4, but now with orange to indicate polar-
targeting.  Abbreviations are: RH = right-handed helix, LH = left-handed helix, Rn 
= ring, Ln = line, Lp = loops, PT = polar-target.  (A) and (B) Phase diagrams for 
αφ° = 0 and αφ° = 0.5/R, respectively.  Selected simulated low-energy structures are 
shown for the indicated parameter choices.  (C) The pitch-yaw plane of the 3-
dimensional phase diagram at αθ° = 0.  The dotted region indicates line 
morphologies.  (D) Phase diagram in which the abscissa is the position around the 
cylinder constraint circle, measured with the angle b, and the ordinate is the 
preferred yaw curvature.  The black dot represents a ring morphology.  In panels 
(C) and (D), numbered black diamonds indicate the parameters of the respective 
simulated structures that are shown on panels (A) and (B). 

 
Figure 6. 
 A proposed model for the dynamics of the Z-ring during B. subtilis sporulation, 

shown as a trajectory in the 3-dimensional parameter space.  Structures are: (a) ring, 
(b) helix, (c) polar-targeted rings, (d) constricting ring. 

 
Figure A1. 
 Methods for mapping a polymer to a curved membrane.  Left column: mapping to a 

cylindrical surface.  The polymer is defined on a flat plane which is then folded, 
parallel to the cylinder axis, so that each monomer endpoint touches the cylinder 
surface.  The middle panel is viewed from the right side to yield the bottom panel.  
Right column: mapping to a spherical surface.  The polymer is defined on a flat disk 
which is then cut and shaped into a cone, so that each monomer endpoint touches 
the sphere surface.  The middle panel is viewed from below to yield the bottom 
panel. 
















